
Copyright © 2007-2016 Tuma Solutions, LLC

Team Process Data Warehouse – High-Level Schema for Core Data
As described in the “roadmap” document, an iterative development strategy has been used to add new

types of data to the warehouse over time. The initial iterations focused on a small, core set of data.

Additional elements have been added over time.

This document describes the data elements that are currently present in the data warehouse.

Audience and Purpose of this Document
The primary goal of this document is to provide a high-level overview of the data elements in the

warehouse, along with their relationships to each other. This document aims to provide simple, high-

level descriptions that are accessible to a nontechnical audience.

This document focuses on data elements that are meaningful to an individual who is retrieving data

from the warehouse (for example, to generate a report). To minimize distractions for the nontechnical

audience, this document does not describe supplementary elements that are primarily of interest to

DBAs (for example, indexes) or to the developers of ETL logic (for example, hashcode columns for

performing quick comparisons).

This document strives to be database agnostic. As a result, this document uses abstract data type

names (such as “Integer” or “String”) to describe the types of various data elements. These abstract type

names map to SQL storage types in a straightforward way, but that mapping is inherently database-

specific. The mappings for a particular database could be provided in a separate document if needed.

This document also strives to be tool-agnostic. Details that are specific to a particular TSP/TPI* tool can

be found in a separate document.

Development on the warehouse schema is still actively underway. As a result, the table and column

names in this document are subject to change.

*
 TSP

SM
 is used by teams working in a wide variety of problem domains (e.g. software, hardware, services). Since these activities

are not limited to software, the name “Team Process Integrated” and the acronym “TPI” are used in this document to describe
the full range of TSP-inspired high-maturity processes, and to avoid improper use of Carnegie Mellon service marks. TSP is a
service mark of Carnegie Mellon University. Carnegie Mellon University has neither contributed to nor evaluated the contents
of this document.

Copyright © 2007-2016 Tuma Solutions, LLC

Dimensions
The following dimensions will be included in the warehouse:

 ETL Audit Log

 Organization

 Team

 Person

 Project

 EV Schedule

 WBS Element

 Task

 Process

 Plan Item

 Process Enactment

 Data Block

 Size Metric

 EV Metric

 Defect Type

 Measurement Type

 Dependency Type

 Attribute

 Text

 Date

 Baseline

Fact Tables
The following fact tables will be included in the warehouse:

 Time Log

 Defect Log

 Task Status

 Task Dates

 EV Schedule Periods

 EV Metric Values

 Size

 Plan Item Attribute

 Plan Item Dependency

 Plan Item Note

 Process Enactment

Conventions
Within this document, several important conventions are used.

Versioned Data

To support the complete spectrum of enterprise analysis needs, it is crucial for the warehouse to

preserve the history of changes to project data. This history makes it possible to analyze trends,

evaluate the ROI of process changes, and more.

That power notwithstanding, the vast majority of analyses are likely to be focused on current data. To

strike a balance between power and complexity, versioned historical data will be placed into tables with

the suffix “_HIST.” Then, views will be provided that constrain the data to include only “current” rows.

Hierarchical Columns

Some columns contain data which is naturally hierarchical. When this occurs, the levels of the hierarchy

are stored in numbered columns such as SOME_COLUMN_1, SOME_COLUMN_2, SOME_COLUMN_3,

etc. In these scenarios, an additional column is generally provided that contains the full hierarchical

path. This “full path” column has the same name, without the final number (for example,

SOME_COLUMN).

This naming convention was selected because it will allow a clean migration path for columns to become

hierarchical over time. For example, if the initial schema contains a column called TASK_NAME, and

future analysis determines that task names contain hierarchical information, the schema could be

extended with new columns TASK_NAME_1, TASK_NAME_2, etc. This change could be made to the

schema without breaking any existing reports or analyses.

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: ETL Audit Log
The ETL Audit dimension captures important metadata about the flow of data into the data warehouse.

Column Type Description

ETL_BATCH_KEY Integer A uniquely assigned number for this row

ETL_BATCH_APP_NAME String The name of the ETL batch application that
ran; for example, “Process Dashboard”

ETL_BATCH_APP_VERSION String The version number of the ETL application
logic

ETL_BATCH_START_TIME Timestamp The date/time when the batch run started

ETL_BATCH_FINISH_TIME Timestamp The date/time when the batch run finished

ETL_BATCH_ELAPSED_SECONDS Number The number of seconds of elapsed time

ETL_BATCH_SOURCE,
ETL_BATCH_SOURCE_IDENTIFIER

String Descriptions of the external data source that
the ETL process drew its data from (See note
below)

ETL_BATCH_SOURCE_DATE Timestamp The effective date/time of the source data; for
example, the time it was extracted from the
source system

ETL_BATCH_ERROR_TEXT_KEY Integer If the batch process encountered an error
during its operation, this field will point to a
record in the Text table which contains
detailed information about the error.

Each time an ETL application reads data from some other system and writes it into the warehouse, it will

insert a new row into this table.

The other dimension and fact tables in the warehouse will include a column called

“ROW_CREATED_BY_KEY” and a column called “ROW_LAST_UPDATED_BY_KEY.” As the ETL process

writes data into these other tables, it will populate the ROW_CREATED_BY_KEY column with the key of

the row it created in this table. Thus, each dimension/fact table row can be traced back to the ETL batch

process which created it. When an ETL process modifies an existing row in a dimension or fact table, the

ETL process should write its ETL_BATCH_KEY into the ROW_LAST_UPDATED_BY_KEY column.

The ETL_BATCH_SOURCE and ETL_BATCH_SOURCE_IDENTIFIER columns are free-form text fields that

can be populated as needed by the ETL application to describe the origin of the source data. For

example:

 For data read from a web service, this could be the URI of the web service.

 For data read from a corporate database, this could be a descriptive identifier for the database.

 For data read from an extract file, this could be the filename of the extract file.

 For data read from an external source like a spreadsheet, this could be the filename of the

spreadsheet and/or a unique GUID stored within it.

Copyright © 2007-2016 Tuma Solutions, LLC

A given ETL application should establish its own naming conventions for the data it writes into these

columns. However, if the string might contain any personally identifiable information (such as the name

of an individual or their initials), that information must be hashed or scrambled to protect data privacy.

The ETL_BATCH_SOURCE column should usually contain a thorough, human-readable description of the

source that was used for this particular batch load. In contrast, the ETL_BATCH_SOURCE_IDENTIFIER

column should include a programmatic descriptor for this data source that is unique and is not time-

varying. As an example, a batch process might populate a particular row with an ETL_BATCH_SOURCE

value of “C:\tpidw\data_extracts\primavera\primavera_task_status_extract_2013-04-13_12-01-36.xml”

and an ETL_BATCH_SOURCE_IDENTIFIER value of “primavera_task_status.” This way, a query on the

ETL_BATCH_SOURCE_IDENTIFIER column can find all of the loads that have ever originated from a

particular data source; while a query on the ETL_BATCH_SOURCE column can help an administrator

identify the file that was used to perform a particular batch load.

When the ETL process finishes its work, it will come back and populate the ETL_BATCH_FINISH_TIME

and ETL_BATCH_ELAPSED_SECONDS columns in this table. These columns can be used by warehouse

administrators to monitor the performance of various ETL processes.

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Organization
The Organization dimension is used to record information about various distinct organizational units,

who are all contributing data to a single warehouse database.

Column Type Description

ORGANIZATION_KEY Integer A uniquely assigned surrogate key for this
organization

ORGANIZATION_NAME String Descriptive name for an organization

ORGANIZATION_PARENT_KEY Integer The unique key of this organization’s parent org

ROW_CREATED_BY_KEY Integer Key for the ETL batch run that created this row

ROW_LAST_UPDATED_BY_KEY Integer Key for the ETL batch run that last updated this row

In future iterations, the Organization dimension may expand to contain additional columns representing

meaningful attributes identified by stakeholders. But for now, the Organization dimension will remain

extremely simple, in keeping with the “minimal data” goal of the initial iteration.

The Organization dimension will be managed as a Type 1 SCD. This decision reflects an assumption that

organizational structure will be useful for configuring privileges (such as constraining the set of data that a

particular user can view), and that a record of historical changes to the org chart is not critical for this task.

Since organizations can form a “ragged” hierarchy of arbitrary depth, a second bridge table will be

provided to simplify the act of querying data from all of the organizations that fall under a particular

branch of the org chart.

Every warehouse will include a single global organization which acts as the “root” of the org structure.

Dimension: Team
The Team dimension is used to record information about various teams of individuals who are working

together on a project.

Column Type Description

TEAM_KEY Integer A uniquely assigned surrogate key for this team

TEAM_NAME String Descriptive name for a team

ROW_CREATED_BY_KEY Integer Key for the ETL batch run that created this row

ROW_LAST_UPDATED_BY_KEY Integer Key for the ETL batch run that last updated this row

In future iterations, the Team dimension could expand to contain additional columns for subteam,

discipline (e.g. Dev vs QA), and other key attributes. But for now, the Team dimension will remain

extremely simple, in keeping with the “minimal data” goal of the initial iteration.

For now, the Team dimension will be managed as a Type 1 SCD. This decision may be revisited in future

iterations as additional attributes are introduced.

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Person
The Person dimension is used to record information about individuals who have participated on a team

project, and whose data has been loaded into the warehouse.

Column Type Description

PERSON_KEY Integer A uniquely assigned surrogate key for this person

PERSON_NAME String The name of the individual, typically in encrypted
form to protect data privacy

ROW_CREATED_BY_KEY Integer Key for the ETL batch run that created this row

ROW_LAST_UPDATED_BY_KEY Integer Key for the ETL batch run that last updated this row

Personal data privacy is a crucial concern of the data warehouse, so in most cases the name of the

individual will be encrypted. This encryption could potentially be disabled in very small team/personal

databases where privacy is not a concern.

Regardless of encryption, the PERSON_KEY can be used as an opaque key for an individual. This allows

queries to count the number of distinct individuals who participated on a project, peer review, etc.

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Project
The Project dimension keeps track of a defined project effort performed by a team.

Column Type Description

PROJECT_KEY Integer A uniquely assigned surrogate key for this project

PROJECT_NAME String Descriptive name for the project

ROW_CREATED/LAST_UPDATED_BY_KEY …same as above

In future iterations, the Project dimension will expand to contain additional columns for subproject,

iteration, start date, and other key attributes. But for now, the Project dimension will remain extremely

simple, in keeping with the “minimal data” goal of the initial iteration.

For now, the Project dimension will be managed as a Type 1 SCD. This decision may be revisited in

future iterations as additional attributes are introduced.

Dimension: EV Schedule
Earned value is a central concept for TPI planning and tracking. On a given project, each individual will

have a personal earned value schedule. In addition, the team will have at least one earned value rollup

that they use to monitor team progress. The EV Schedule dimension is used to record these entities.

Column Type Description

EV_SCHEDULE_KEY Integer A uniquely assigned surrogate key for this schedule

EV_SCHEDULE_NAME String A short, human-readable name for this schedule

EV_SCHEDULE_IDENTIFIER String An identifier, possibly assigned by the source system,
for this schedule

EV_SCHEDULE_ROLLUP_FLAG Boolean True if this schedule represents a team rollup, false if
it represents a personal schedule

Although it is common for there to be a one-to-one mapping between projects and earned value

schedules, some tools do not require this. When multiple EV schedules/rollups can exist for a given

project, the entries in this dimension become very important. Tools that enforce a 1-to-1 mapping will

generally create an automatic entry in this table for each individual, and an entry for the team rollup.

If the EV_SCHEDULE_NAME for a personal schedule would reveal the identity of the associated

individual, this name may need to be encrypted to protect data privacy.

A second bridge table will be provided to simplify the act of querying data from all of the personal

schedules that are included in a particular rollup.

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: WBS Element
The concept of a hierarchical Work Breakdown Structure is central to virtually every TSP/TPI tool and

every project plan. Within a particular plan, the WBS hierarchy is typically described in terms of

Elements, which describe the decomposition of a project plan into successively smaller parts. The names

of these parts are captured in the WBS Element dimension.

Column Type Description

WBS_ELEMENT_KEY Integer A uniquely assigned key for this WBS element name

PARENT_WBS_ELEMENT_KEY Integer The WBS_ELEMENT_KEY of this element’s logical parent

WBS_ELEMENT_NAME String The full path name of this WBS element, formed by
joining all path segments together with “/” as a
delimiter.

WBS_ELEMENT_NAME_LEN Integer The number of name segments in this WBS element path

WBS_ELEMENT_NAME_1 String First name segment in the WBS element path

WBS_ELEMENT_NAME_2 String Second name segment in the WBS element path

WBS_ELEMENT_NAME_N String …etc. Unused fields have the value “-“

WBS_ELEMENT_LAST_1 String Final name segment in the WBS element path

WBS_ELEMENT_LAST_2 String Second-to-last name segment in the WBS element path

WBS_ELEMENT_LAST_N String …etc. Unused fields have the value “-“

For maximum flexibility when querying, WBS element names are stored in three ways:

 The full path of a WBS element will be stored in the WBS_ELEMENT_NAME field, in a format that

is reminiscent of the path names on a UNIX file system. This full path column can be useful as a

label on reports, and may also be useful in queries that use SQL pattern-matching operators.

 The hierarchical components of a path (e.g. parent / child / grandchild) will be split out and

stored in the fields WBS_ELEMENT_NAME_1, WBS_ELEMENT_NAME_2, etc. This follows the

typical pattern for a hierarchical data warehouse dimension.

 These same values will be stored in the columns WBS_ELEMENT_LAST_1, WBS_ELEMENT_LAST_2,

etc. The primary difference is that while the WBS_ELEMENT_NAME_# columns are left-aligned,

the WBS_ELEMENT_LAST_# columns will be right-aligned. (These columns will make it possible to

find a component like “Component ABC/Subcomponent XYZ” across several projects, even if this

component has been given a different parent in the various projects.)

The exact number of columns (the number “N” in the table above) will be fixed. Stakeholder input will

be helpful to select a value that is high enough to capture the most complex project plan that will be

encountered in practical use.

 If “N” is large enough, it should be extremely rare for a WBS element to use every column; in

that case, the value “-” will be written into the higher-numbered columns.

 In the unlikely event that a particular project plan requires more detail than anticipated, the final

column (WBS_ELEMENT_NAME_N or WBS_ELEMENT_LAST_N) will include a slash-delimited path that

collects all of the remaining path segments. As a result, the data warehouse will still be able to capture

the most detailed plan; but drill-down ability will be limited for WBS depths greater than “N.”

Copyright © 2007-2016 Tuma Solutions, LLC

When querying data, it will be extremely common to request data for a particular WBS element and all

of its descendants. To support this, a second bridge table will be created to capture hierarchical

relationships within the WBS.

A typical project plan will contain both WBS elements, and tasks organized underneath those elements.

The WBS Element dimension only describes the portion of the hierarchy above the task level. Task

details are captured separately in the Task dimension, described below.

The WBS Element dimension is not a slowly changing dimension (SCD). Entries in the WBS Element

dimension are never modified or deleted, because they only represent the abstract names of WBS

elements. These element names might or might not map to entries in a particular project plan; such

information is recorded in the Plan Item dimension, described below.

Dimension: Task
A TPI project plan includes a list of tasks that must be performed. The names of these tasks are captured

in the Task dimension.

Column Type Description

PROJECT_KEY Integer A uniquely assigned surrogate key for this task name

TASK_NAME String Descriptive name for the task

Within a hierarchical plan, tasks always appear underneath a WBS element. The Task dimension will

only capture the portion of the task name that appears underneath the WBS element.

Most TSP/TPI tools support the concept of a repeatable process which is used over and over again

underneath multiple WBS elements. Since the Task dimension only includes the portion of the task

name that appears underneath the WBS element, this TASK_NAME field will quite regularly capture the

short list of task names from a repeatable process. However, some TSP/TPI tools allow repeatable

processes to have a hierarchical structure of their own. In that case, the Process Enactment dimension

will be the most accurate representation of the repeatable process phases that were used to create

each element in the project plan.

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Process
Repeatable, defined processes are a fundamental building block of TSP-style planning and analysis. Thus,

it will be important to capture process definitions in the warehouse, and to tag metrics with the

corresponding process metadata.

Good process definitions evolve over time. In addition, process definitions are often tailored to meet the

needs of a particular team or organization. Accordingly, it will be important for the schema to support

these needs. The resulting schema is shown below.

First, a table will be created to contain the names of the processes that have been defined:

Column Type Description

PROCESS_KEY Integer A uniquely assigned surrogate key for a process

PROCESS_NAME String Name for the process definition

PROCESS_VERSION String Version number for the process definition

PROCESS_IDENTIFIER String An alphanumeric identifier for this process/version

ROW_CREATED_BY_KEY, ROW_LAST_UPDATED_BY_KEY …same as above

Next, a table will be created to describe the phases in these processes:

Column Type Description

PHASE_KEY Integer A uniquely assigned surrogate key for a process phase

PROCESS_KEY Integer The key for the process to which this phase belongs

PHASE_NAME String Descriptive name for the phase (potentially better for
reports)

PHASE_SHORT_NAME String Short name for the phase; may be an abbreviation

PHASE_TYPE String One of “Overhead,” “Construction”, “Appraisal” or “Failure”

PHASE_ORDINAL Integer A number indicating the relative order of this phase within
the process. (This is important for reporting purposes, and
also for calculations such as Yield.) This may be null for an
older phase that has been removed from the process.

PHASE_IDENTIFIER String An alphanumeric identifier for this phase

ROW_CREATED_BY_KEY, ROW_LAST_UPDATED_BY_KEY …same as above

Finally, a table will be created to document equivalency relationships between phases in two different

process definitions:

Column Type Description

PHASE_KEY Integer The key for a process phase

MAPS_TO_PHASE_KEY Integer The key of an equivalent phase in another process

Process Phase Phase Mapping

Copyright © 2007-2016 Tuma Solutions, LLC

These tables will be Type 1 SCDs. The data in the tables will capture the most current known data about

each process.

The phase mapping dimension is used to capture a number of important process concepts:

 When a team creates a tailored version of an organizational process, this would be represented

by two separate entries in the Process table, and two separate lists of Phases. Rows would be

created in the Phase Mapping table to describe how each phase in the tailored process maps

back to a phase in the original process.

 When a team makes significant changes to their process, they can do so by “archiving” the

original process definition and creating a new process. Phase mapping rows could then describe

equivalency relationships between the phases in the new process and the phases in the original

process. In this way, teams can capture information about process evolution, yet still include

historical data in current analyses.

 Organizations may wish to aggregate data from many different teams of different disciplines,

then analyze that data using a common framework. For example, it could be valuable to analyze

different types of rework from every team in an organization, regardless of whether those

teams write software or produce training materials. As another example, a research

organization like the SEI might wish to map many different organizational processes back to a

common framework like TSP. Phase Mapping rows could be created to map each team process

back to the common framework.

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Plan Item
A team project can contain many components, tasks, and milestones that are arranged hierarchically.

The Plan Item dimension records these objects, and documents how they change and evolve over time.

Column Type Description
PLAN_ITEM_KEY Integer A uniquely assigned surrogate key for this item
PARENT_PLAN_ITEM_KEY Integer The unique key of the plan item which is this row’s

parent

PROJECT_KEY Integer The unique key of a team project
WBS_ELEMENT_KEY Integer The unique key of a WBS element name
TASK_KEY Integer The unique key of a task name. Null if this plan

item represents
a WBS element.

PHASE_KEY Integer The unique key of the process
phase for this task.

PLAN_ITEM_IDENTIFIER String A string, assigned by the source system, which
uniquely identifies this item within a particular
project plan

PLAN_ITEM_ORDINAL Number A number indicating the relative position of this
plan item within its siblings

PLAN_ITEM_LEAF_ELEMENT_FLAG Boolean True if this plan item represents a WBS element
with no sub-elements

PLAN_ITEM_LEAF_TASK_FLAG Boolean True if this plan item represents a task with no
subtasks

PLAN_ITEM_DELETED_FLAG Boolean True if this item has been deleted from the plan
ROW_CREATED/LAST_UPDATED_BY_KEY …same as above

These relationships are depicted visually below:

WBS Elements appear in the Plan Item dimension as rows with no TASK_KEY or PHASE_KEY. Project

tasks appear as rows with an appropriate TASK_KEY and PHASE_KEY. Milestone objects appear in the

Plan Item dimension as rows whose TASK_KEY points to the milestone name, and whose PHASE_KEY

points to a special “Milestone” phase.

The Plan Item dimension will be managed as a Type 4 SCD. Thus, the table shown above will record the

most current values for a particular item within a team plan. A second table will be created to track the

evolution of these values over time.

Plan Item

Project

WBS Element

Task

Phase

Copyright © 2007-2016 Tuma Solutions, LLC

Plan Item Dimension Example
Then Plan Item dimension is central to the design of the data

warehouse, so it is important to thoroughly understand how this

dimension captures the information in a project plan. To that end,

an example is helpful to illustrate the use of the Plan Item

dimension and its relationships with the Project, WBS Element,

Task, and Phase dimensions. So consider the hypothetical project

plan depicted at right. This plan might be captured in the data

warehouse in the following way:

Representation in the Project table:

PROJECT_KEY PROJECT_NAME
101 Project XYZ

Abbreviated representation in the WBS Element

table (excluding numbered columns):

WBS_ELEMENT_KEY WBS_ELEMENT_NAME
200 <Root Element>

201 Component A

202 Component B

203 Component C

204 Component C/Subcomponent C1

205 Component C/Subcomponent C2

Representation in the Task table: Representation in the Phase table:

TASK_KEY TASK_NAME PHASE_KEY PHASE_SHORT_NAME PHASE_NAME
301 Work 401 MISC Miscellaneous

302 Code 402 CODE Code

303 Test 403 UT Unit Test

304 Postmortem 404 PM Postmortem

Representation in the Plan Item table:

PLAN_ITEM_KEY PROJECT_KEY WBS_ELEMENT_KEY TASK_KEY PHASE_KEY
1 101 200 - -

2 101 200 301 401

3 101 201 - -

4 101 201 302 402

5 101 201 303 403

6 101 201 304 404

7 101 202 - -

8 101 202 302 402

9 101 202 303 403

10 101 202 304 404

11 101 203 - -

12 101 204 - -

13 101 204 301 401

14 101 205 - -

15 101 205 301 401

Copyright © 2007-2016 Tuma Solutions, LLC

Continuing with this hypothetical project example, it is also helpful to demonstrate the manner in which names are stored in the WBS Element

dimension. The table below shows how the WBS elements in this project would be stored into the numbered columns, assuming N = 3:

WBS_ELEM_KEY WBS_ELEMENT_NAME ELEM_NAME_1 ELEM_NAME_2 ELEM_NAME_3 ELEM_LAST_3 ELEM_LAST_2 ELEM_LAST_1

200 <Root Element> - - - - - -

201 Component A Component A - - - - Component A

202 Component B Component B - - - - Component B

203 Component C Component C - - - - Component C

204 Component C/Subcomponent C1 Component C Subcomponent C1 - - Component C Subcomponent C1

205 Component C/Subcomponent C2 Component C Subcomponent C2 - - Component C Subcomponent C2

The plain WBS_ELEMENT_NAME column provides the full path name of a particular component, as it might be displayed in various reports.

The numbered columns are provided to support specific types of COTS query tools. To appreciate how these columns can be used, consider

these SQL queries:

Example query Interpretation

SELECT … WHERE WBS_ELEMENT_NAME_1 = “Component C” Find data in the warehouse associated with Component C and all of
its subcomponents

SELECT … WHERE WBS_ELEMENT_NAME_1 = “Component C”
GROUP BY WBS_ELEMENT_NAME_2

Create a pivot table that shows detail for each of the
subcomponents underneath Component C

These columns make it simple to perform many very common drill-down analyses without resorting to stored procedures or database-specific

extensions. Relying only on “=” clauses and GROUP BY constructs allows extremely efficient analysis of massive amounts of data by leveraging

prebuilt database table indexes.

The WBS_ELEMENT_LAST_* columns are designed to support queries that find a particular component in multiple different project plans, even if

the component had a different set of ancestors in the various plans. For example, if a team has several project iterations, and they create a new

plan for each iteration, they could potentially encounter the following pattern:

 In Iteration 1, they have a WBS Element in their plan called “Component A”

 In Iteration 2, they have a WBS Element in their plan called “Iteration 1 Cleanup/Component A”

 In Iteration 3, they have a WBS Element in their plan called “Iteration 1 Rework/Component A”

An SQL query that tests WBS_ELEMENT_LAST_1 = “Component A” would allow the team to roll up Component A data from all three iterations.

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Process Enactment
Repeatable processes form the basis for a number of common analyses in high-maturity projects. To

perform these analyses, it is important to identify the various places in a project plan where a particular

process was used to perform work. The Process Enactment dimension captures this information.

Column Type Description
PROCESS_ENACTMENT_KEY Integer A uniquely assigned surrogate key for this row

PROCESS_KEY Integer The unique key of a process that was used to perform
work

ROOT_PLAN_ITEM_KEY Integer The unique key of a parent item in a project plan where
this process was applied/instantiated to create subtasks

INCLUDES_PLAN_ITEM_KEY Integer The unique key of an item in the project plan that is a
part of this enactment of the given process:

 The project plan will include tasks corresponding
to each step in the process. A row will be created
in this table corresponding to each of those tasks.

 The “root” plan item is also a part of the
enactment of this process, since metrics like size
could be recorded there. Accordingly, a row will
always be created in this table including the root.

ROW_CREATED/LAST_UPDATED_BY_KEY …same as above

These relationships are depicted visually below:

Queries can search for distinct [Process / Root] pairs to find the various instances where a particular

process was used to perform work. Such an instance is called an “enactment” of the process. These

distinct instances could become individual data points in a regression analysis or a trend chart.

The “includes” plan item can be joined to another fact table to summarize/aggregate data for a

particular instance (or collection of instances). This could be used to identify process enactments that

are 100% complete, to sum up their size and time data, and to perform other analyses.

Process

Process Enactment Plan Item (root)

Plan Item (includes)

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Data Block
Many metrics are collected during the course of a high maturity team project. For reporting and

analysis purposes, it is important to track the origin of each metric. To facilitate this, the warehouse will

include the Data Block dimension. A Data Block is an abstract collection of metrics and data associated

with a particular individual working within a particular organization as part of a particular project team.

Column Type Description

DATA_BLOCK_KEY Integer A uniquely assigned surrogate key for this data block

ORGANIZATION_KEY Integer The unique key of an organization

TEAM_KEY Integer The unique key of a team

PERSON_KEY Integer The unique key of an individual

ROW_CREATED/LAST_UPDATED_BY_KEY …same as above

These relationships are depicted visually below:

The ORGANIZATION_KEY, TEAM_KEY, and PERSON_KEY fields will reference entities from the associated

dimensions.

Organization

Data Block Team

Person

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Size Metric
Many different metrics can be used to measure size; the Size Metric dimension records these.

Column Type Description

SIZE_METRIC_KEY Integer A uniquely assigned surrogate key for a size metric

SIZE_METRIC_NAME String The name of this size metric

SIZE_METRIC_SHORT_NAME String Short name for this metric; may be an abbreviation

ROW_CREATED/LAST_UPDATED_BY_KEY …same as above

In future iterations, the Size Metric dimension will expand to contain additional columns representing

meaningful attributes identified by stakeholders. But for now, the Size dimension will remain extremely

simple, in keeping with the “minimal data” goal of the initial iteration.

Dimension: EV Metric
Various metrics can be recorded for an EV schedule; the EV Metric dimension records these.

Column Type Description

EV_METRIC_KEY Integer A uniquely assigned surrogate key for an EV metric

EV_METRIC_NAME String The name of this EV metric

EV_METRIC_IDENTIFIER String A unique identifier for this metric; e.g. “BCWP”

EV_METRIC_UNITS String The unit of measure for this metric; e.g. “minutes”

EV_METRIC_AGGR_FUNCTION String The SQL function that might be used to aggregate
metrics of this type; e.g. “sum” or “max”

Dimension: Defect Type
Defects have a type that comes from an associated Defect Type Standard. A dimension is provided to

manage these values.

Column Type Description

DEFECT_TYPE_KEY Integer A uniquely assigned surrogate key for this
defect type

DEFECT_TYPE_STANDARD_NAME String The name of the defect type standard to which
this defect type belongs

DEFECT_TYPE_NAME String The name of one defect type within this
standard

DEFECT_TYPE_DESCRIPTION String A longer description of this defect type

ROW_CREATED_BY_KEY, ROW_LAST_UPDATED_BY_KEY …same as above

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Measurement Type
When calculating measurements, we often see examples of planned vs actual data. But these are only

two possible qualifiers out of many. For example, we also see examples of replan and forecast data. The

Measurement Type dimension is provided to flexibly record different types of observations that are

collected or generated by various TSP/TPI tools.

Column Type Description

MEASUREMENT_TYPE_KEY Integer A uniquely assigned surrogate key for this type

MEASUREMENT_TYPE_NAME String The name for a measurement type

Dimension: Dependency Type
Many tools provide the capability to describe dependencies between the various items in a plan. A

dimension captures the various types of dependencies:

Column Type Description

DEPENDENCY_TYPE_KEY Integer A uniquely assigned surrogate key for this type

DEPENDENCY_TYPE_NAME String The name for a dependency type

DEPENDENCY_TYPE_ABBR String An abbreviation for this dependency type

This table will always contain exactly four rows, corresponding to the four standard dependency types:

 Finish-to-Start (FS)

 Finish-to-Finish (FF)

 Start-to-Start (SS)

 Start-to-Finish (SF)

is table will always c

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Attributes
The data warehouse will be capable of aggregating data that originates from a number of different tools

and source systems. These data sources will contain a variety of textual data attributes that are not

directly captured in the other warehouse tables. To support the storage and analysis of those

attributes, a pair of dimensional tables will be provided.

The first table will capture the names and unique identifiers for the different types of attributes:

Column Type Description

ATTRIBUTE_KEY Integer A uniquely assigned surrogate key for this attribute

ATTRIBUTE_IDENTIFIER String A unique identifier for the attribute

ATTRIBUTE_NAME String A human-readable description for this attribute

Textual attribute values will be stored in a separate table:

Column Type Description

ATTRIBUTE_VALUE_KEY Integer A uniquely assigned surrogate key for this attribute value

ATTRIBUTE_KEY Integer A key into the previous table, describing which type of
attribute this value represents

ATTRIBUTE_VALUE_TEXT String A textual value stored for this attribute

In the future, this model could possibly be extended to allow for the storage of attribute values which

are numbers, timestamps, or other primitive types. But in keeping with the simple goals of the initial

iteration, attribute values will only be stored as text.

Finally, fact tables (described in the next section) will be used to capture the association of attribute

values to various entities in the warehouse.

Dimension: Text
Many facts have associated comments or descriptions. The Text dimension provides a common,

reusable mechanism for storing these free-text values.

Column Type Description

TEXT_KEY Integer A uniquely assigned surrogate key for this text item

TEXT_VALUE String An arbitrary block of free text, which could be of significant length

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Date
Date values appear often in the metrics that are collected and analyzed by teams. The Date dimension

provides an efficient means of representing and rapidly analyzing these values.

Column Type Description

DATE_KEY Integer An integer key representing a particular date

FULL_DATE Date The full representation of this date stored as a native
database Date object

DATE_NAME String A human readable description of this date in the form
YYYY-MM-DD

DATE_NAME_US String A human-readable description of this date in the form
M/D/YY

DATE_NAME_EU String A human-readable description of this date in the form
D/M/YY

DAY_OF_WEEK Integer 1 for Sunday, 2 for Monday, 7 for Saturday

DAY_NAME_OF_WEEK String A day name like “Sunday,” “Monday,” etc.

WEEKDAY_WEEKEND String The text “Weekday” if this is a day from Monday to
Friday, “Weekend” otherwise

DAY_OF_MONTH Integer The calendar day of the month, from 1 to 31

LAST_DAY_OF_MONTH_FLAG Boolean True if this date is the last day of the month

MONTH_OF_YEAR Integer 1 for January, 12 for December

MONTH_NAME String “January”, “February”, etc.

CALENDAR_YEAR Integer The year, for example 2013

DATE_SEQ Integer The number of whole days elapsed since Nov 17, 1858
(i.e., Modified Julian Date). This value enables fast date
arithmetic via addition/subtraction

Even though dates can be stored natively by the underlying database engine, it is a data warehousing best

practice to augment those timestamps with a dimension such as this one. This provides several benefits:

 “Group by” queries can make use of database indexes to efficiently slice and dice data in other

tables by day/week/month/year without the overhead of row-at-a-time date arithmetic

 The Date dimension can include extra rows to hold special values like “Never” or “Unknown.”

Within this dimension, 8-digit integer keys of the form YYYYMMDD will be assigned to individual dates.

In addition, the following “special” date values (always > 99999000) will be added to the table:

Key Date Name Interpretation

99999830 Not Yet A particular event has not yet occurred

99999860 Never A particular event is never projected to happen

99999880 Cannot Calculate A date calculation cannot be performed due to insufficient data

99999930 Unknown A date was missing from the source system or otherwise not provided

99999960 Invalid An invalid or corrupt date was read from the source system

Copyright © 2007-2016 Tuma Solutions, LLC

Dimension: Baseline
Baselines are a common concept in project planning. Baselines may be saved independently for various

projects, and many tools allow the creation of multiple historical baselines. The baseline dimension

provides a place to capture a list of the various baselines that exist:

Column Type Description

BASELINE_KEY Integer A uniquely assigned surrogate key for this
baseline

BASELINE_NAME String A user-displayable name for this baseline

BASELINE_IDENTIFIER String A string, assigned by the source system, which
uniquely identifies this baseline

BASELINE_DESCRIPTION_TEXT_KEY Integer A key into the Text dimension, pointing to a
description for this baseline. (Optional)

BASELINE_EFFECTIVE_DATE Timestamp The date/time of the moment when the
baseline was created/saved in the source
system

BASELINE_EFFECTIVE_DATE_KEY Integer The baseline effective date as an index into the
Date dimension

BASELINE_TARGET_TYPE String A string describing the type of entity this
baseline is for. If the baseline was saved for an
entity that has a representation in the
warehouse (such as a Project, Team, or
EvSchedule), this should be the simple name of
the entity as seen in the Java-based data model.
If the baseline was saved for an external entity
that does not map exactly to a warehouse
entity, this can be a custom value.

BASELINE_TARGET_KEY Integer If the baseline was saved for an entity that has a
representation in the warehouse, this should be
a key pointing to a row in the associated
dimension. For example, if the target type is
“Project”, this would be the key of an item in
the Project dimension. If the baseline was saved
for an external entity, this may be null.

BASELINE_ACTIVE_FLAG Boolean True if this is the “active” baseline for the
specified target. A given target can have only
one active baseline.

ROW_CREATED_BY_KEY, ROW_LAST_UPDATED_BY_KEY …same as above

As stated above, the baseline dimension captures the list of the baselines that exist. The data actually

associated with a baseline will be stored in one or fact tables (described below), with a BASELINE_KEY

pointing back to a row in this table.

Copyright © 2007-2016 Tuma Solutions, LLC

Fact: Time Log
The Time Log fact table records time log entries collected by individuals. The grain of the table is a

single time log entry recorded by a particular individual.

Column Type Description

TIME_LOG_FACT_KEY Integer A unique ID for this table row

PLAN_ITEM_KEY Integer Key for the plan item this time log entry is
attached to; conveys the project, WBS element,
task, and process phase for this time log entry

DATA_BLOCK_KEY Integer Key for the data block this time log entry came
from; conveys the organization, team, and
individual this time log entry is associated with

TIME_LOG_START_DATE Timestamp The start date/time of this time log entry

TIME_LOG_START_DATE_KEY Integer The start date as an index into the Date
dimension

TIME_LOG_END_DATE Timestamp The end date/time of this time log entry

TIME_LOG_DELTA_MINUTES Number The number of work minutes for this time log
entry, calculated as total elapsed time minus
interrupt time

TIME_LOG_INTERRUPT_MINUTES Number The number of minutes of interrupt time

TIME_LOG_COMMENT_TEXT_KEY Integer The key of a row in the Text dimension, holding
the comment for this time log entry

ROW_EFF_START_DATE Timestamp The date/time this row became effective

ROW_EFF_END_DATE Timestamp The date and time when this row was replaced /
deleted

ROW_CURRENT_FLAG Boolean True if this row represents current information,
False if it has been replaced or deleted

ROW_CREATED_BY_KEY, ROW_LAST_UPDATED_BY_KEY …same as above

These relationships are depicted visually below. (The ETL Audit dimension is omitted from the diagram

for brevity.)

During the course of a project, an individual might edit or delete existing time log entries. (Generally,

these changes represent data corrections.) The ROW_EFF_* columns allow the fact table to capture the

history of these changes. If a report wishes to analyze time log data as it appeared at some historical

point in time, it can use a BETWEEN clause on these columns. To query or summarize current time log

data, the ROW_CURRENT_FLAG column can be used to select the rows that are currently in effect.

Organization, Team, PersonData Block

Project, WBS Element, Task, PhasePlan Item

Time Log
Text

Date

Copyright © 2007-2016 Tuma Solutions, LLC

Fact: Defect Log
The Defect Log fact table records defect log entries collected by individuals. The grain of the table is a

single defect recorded by a particular individual.

Column Type Description

DEFECT_LOG_FACT_KEY Integer A unique ID for this table row

PLAN_ITEM_KEY Integer Key of the plan item this defect is attached to

DATA_BLOCK_KEY Integer Key of the data block this defect came from

DEFECT_IDENTIFIER String ID for this defect, possibly from the source
system

DEFECT_FOUND_DATE Timestamp The date this defect was found

DEFECT_FOUND_DATE_KEY Integer The date this defect was found, as an index
into the Date dimension

DEFECT_TYPE_KEY Integer The unique key of a defect type from the
Defect Type Standard dimension

DEFECT_INJECTED_PHASE_KEY Integer The key of a process phase where this defect
was injected

DEFECT_REMOVED_PHASE_KEY Integer The key of a process phase where this defect
was found or removed

DEFECT_FIX_PENDING_FLAG Boolean True if this defect has not been fixed yet

DEFECT_FIX_TIME_MINUTES Number The number of minutes of fix time

DEFECT_FIX_COUNT Integer The number of distinct defects represented
by this entry (usually 1)

DEFECT_FIX_DEFECT_IDENTIFIER String The identifier of another defect that was
being fixed when this defect was injected

DEFECT_DESCRIPTION_TEXT_KEY Integer Key of a description stored in the “Text”
dimension

ROW_EFF_START/END_DATE, ROW_CURRENT_FLAG,
ROW_CREATED_BY_KEY, ROW_LAST_UPDATED_BY_KEY

…same as above

These relationships are depicted visually below. (The ETL Audit dimension is omitted from the diagram

for brevity.)

As with the time log, ROW_EFF_* columns are provided to track the history of edits to a particular

defect over time. These rows can be tied together with the DEFECT_IDENTIFIER column.

Organization, Team, PersonData Block

Project, WBS Element, TaskPlan Item

Defect Log
Defect Type

Phase

Text

Date

Copyright © 2007-2016 Tuma Solutions, LLC

Fact: Task Status
The Task Status table brings together several commonly used pieces of information about tasks. The

granularity of this table is a row per leaf task per assigned individual. So each time an individual is

assigned to a task, a row is created in this table. If multiple individuals are assigned to a task, a separate

row is created for each person. Rows are only created for “leaf” tasks – they are not created for

hierarchical parents like WBS elements. This ensures that the rows in this table represent non-

overlapping measurements that can be grouped and summed in arbitrary ways.

Column Type Description

TASK_STATUS_FACT_KEY Integer A unique ID for this table row

PLAN_ITEM_KEY Integer Key of the plan item for this task

DATA_BLOCK_KEY Integer Key of the data block for the assigned individual

TASK_PLAN_TIME_MINUTES Number The amount of time this individual plans to
spend on this task, in minutes

TASK_ACTUAL_TIME_MINUTES Number The actual amount of time this individual has
spent on this task, in minutes

TASK_ACTUAL_START_DATE Timestamp The date this individual began working on this
task; null if the task has not started

TASK_ACTUAL_START_DATE_KEY Integer The start date as an index into the Date
dimension. If the task has not yet started, this
will contain the special date “Not Yet”

TASK_ACTUAL_COMPLETE_DATE Timestamp The date this task was marked complete; null
if the task is still incomplete

TASK_ACTUAL_COMPLETE_DATE_KEY Integer The completion date as an index into the Date
dimension; “Not Yet” if the task is incomplete

BASELINE_KEY Integer A key into the Baseline dimension, if this fact
represents a portion of a saved baseline.

ROW_EFF_START/END_DATE, ROW_CURRENT_FLAG,
ROW_CREATED/LAST_UPDATED_BY_KEY

…same as above

The columns in this table were selected because they form the basis for a large number of common

reporting needs. Some columns could be calculated from other data (for example, actual time and

actual start date could be retrieved from the time log), but they are summarized here for convenience.

Dates are stored as both native timestamps, and as foreign keys into the Date dimension. The native

timestamps columns include time of day information, which may reflect wide time zone variances for

geographically distributed teams. In contrast, the DATE_KEY values will include the date portion only,

expressed relative to the time zone of the assigned individual. Null native timestamps will translate to

the special DATE_KEY “Not Yet,” allowing the use of a SQL MIN and MAX functions to quickly summarize

the team start/completion date of a particular Plan Item that was assigned to multiple individuals.

Organization, Team, Person

Project, WBS Element, Task

Task Status Data Block

Plan Item

Date

Copyright © 2007-2016 Tuma Solutions, LLC

Fact: Task Dates
The earned value planning and tracking activity calculates a number of useful dates for the tasks in a

project plan. These dates are captured in the Task Dates table. The grain of this table is one row per

assigned individual, per “leaf task” in a personal EV schedule, per applicable measurement type.

Column Type Description

TASK_DATE_FACT_KEY Integer A unique ID for this table row

PLAN_ITEM_KEY Integer Key of the plan item for this task

DATA_BLOCK_KEY Integer Key of the data block for the assigned individual

EV_SCHEDULE_KEY Integer Key of the personal EV schedule that is responsible for
this date

MEASUREMENT_TYPE_KEY Integer Key indicating the type of date this row represents
(e.g. plan, actual, forecast, etc.)

TASK_DATE_KEY Integer The completion date of the task as an index into the
Date dimension.

BASELINE_KEY Integer A key into the Baseline dimension, if this fact
represents a portion of a saved baseline.

ROW_EFF_START/END_DATE, ROW_CURRENT_FLAG,
ROW_CREATED/LAST_UPDATED_BY_KEY

…same as above

At a minimum, tools should create rows in this table for “Plan” and “Actual” completion dates.

Additional rows can be created for other types of dates (for example, to represent different types of

replan/forecast calculations).

If a task has not been completed yet, its “Actual” row will still be included in this table with the

DATE_KEY for “Not Yet.” If a particular calculation believes that a task is never projected to finish, the

row will be created in this table with the DATE_KEY for “Never.” This convention will allow the SQL MAX

function to summarize team completion dates for various measurement types.

Organization, Team, Person

Project, WBS Element, Task

Task Date

Data Block

Plan Item

EV Schedule

Measurement Type

Date

Copyright © 2007-2016 Tuma Solutions, LLC

Fact: EV Schedule Periods
When planning and tracking work with earned value, the overall calendar is broken into time periods
(generally a week long). Then time and value is tracked against those time periods. In the warehouse,
this information is recorded into the EV Schedule Period fact table. The grain of this table is one row per
assigned individual, per EV schedule, per time period.

Column Type Description

EV_SCHEDULE_PERIOD_FACT_KEY Integer A unique ID for this table row

EV_SCHEDULE_KEY Integer Key of the personal EV schedule that contains this
schedule period

DATA_BLOCK_KEY Integer Key of the data block for the individual who owns
that schedule

PERIOD_START_DATE Date Start date/time for this calendar period

PERIOD_START_DATE_KEY Integer Start date as an index into the Date dimension

PERIOD_END_DATE Date End date/time for this calendar period

PERIOD_END_DATE_KEY Integer End date as an index into the Date dimension

PLAN_TIME_MINUTES Number The number of minutes of time this individual
planned to work during this calendar period

CUM_PLAN_TIME_MINUTES Number A running total of planned time

ACTUAL_TIME_MINUTES Number The number of minutes of time this individual
actually worked during this calendar period

CUM_ACTUAL_TIME_MINUTES Number A running total of actual time

PLAN_VALUE_MINUTES Number The amount of value this individual planned to
earn in this calendar period, expressed in minutes

CUM_PLAN_VALUE_MINUTES Number A running total of planned value

EARNED_VALUE_MINUTES Number The amount of value this individual actually earned
during this calendar period, expressed in minutes

CUM_EARNED_VALUE_MINUTES Number A running total of earned value

ACTUAL_COST_MINUTES Number The total number of minutes of actual time that
were spent on tasks that were marked complete
during this calendar period

CUM_ACTUAL_COST_MINUTES Number A running total of actual cost

BASELINE_KEY Integer A key into the Baseline dimension, if this fact
represents a portion of a saved baseline.

ROW_EFF_START/END_DATE, ROW_CURRENT_FLAG,
ROW_CREATED/LAST_UPDATED_BY_KEY

…same as above

This fact table will only contain data for personal EV schedules. A secondary view will be provided that
rolls up data from all of the schedules for a team. For convenience, that secondary view will also provide
columns that normalize planned and actual EV to percentage points.

Organization, Team, Person

EV Period

Data Block

EV Schedule

Date

Copyright © 2007-2016 Tuma Solutions, LLC

Fact: EV Metric Values
Once data has been collected against an EV schedule, a great number of useful metrics can be

calculated.

The most common set of values will be numeric. These are recorded in an “EV Metric Number” fact

table. The grain of this table is one row per individual, per EV schedule, per EV Metric.

Column Type Description

EV_METRIC_NUMBER_FACT_KEY Integer A unique ID for this table row

EV_SCHEDULE_KEY Integer Key of a personal EV schedule

DATA_BLOCK_KEY Integer Key of the data block for the individual who
owns that schedule

EV_METRIC_KEY Integer Key of an EV Metric

VALUE Number The numeric value of that EV Metric for this
schedule for this individual

BASELINE_KEY Integer A key into the Baseline dimension, if this fact
represents a portion of a saved baseline.

ROW_EFF_START/END_DATE, ROW_CURRENT_FLAG,
ROW_CREATED/LAST_UPDATED_BY_KEY

…same as above

Initially, this table will include rows to capture the values of the standard EV metrics BCWS, BCWP,

ACWP, and BAC. Additional EV Metrics will be added in future releases.

Organization, Team, Person

EV Metric Value

Data Block

EV Schedule

EV Metric

Copyright © 2007-2016 Tuma Solutions, LLC

Fact: Size
The Size fact table records information about the planned and actual sizes of work products.

Column Type Description

SIZE_FACT_KEY Integer A unique ID for this table row

PLAN_ITEM_KEY Integer Key for the plan item that this size
measurement is associated with

DATA_BLOCK_KEY Integer Key for the data block for the individual who
recorded this size measurement

SIZE_METRIC_KEY Integer Key of the size metric for this table row

MEASUREMENT_TYPE_KEY Integer Indicator of whether this row represents a
planned or actual size

SIZE_BASE Number Standard size accounting metrics

SIZE_ADDED Number “

SIZE_DELETED Number “

SIZE_MODIFIED Number “

SIZE_REUSED Number “

SIZE_TOTAL Number “

SIZE_ADDED_AND_MODIFIED Number A&M size, precalculated for ease of use in
queries, analyses, and reports

BASELINE_KEY Integer A key into the Baseline dimension, if this fact
represents a portion of a saved baseline.

ROW_EFF_START/END_DATE, ROW_CURRENT_FLAG,
ROW_CREATED/LAST_UPDATED_BY_KEY

…same as above

These relationships are depicted visually below. (The ETL Audit dimension is omitted from the diagram

for brevity.)

Future iterations of the warehouse may include additional data, such as the name of specific work

products that were created. But for now, the Size fact table will remain extremely simple, in keeping

with the “minimal data” goal of the initial iteration.

Organization, Team, Person

Project, WBS Element, Task

Size
Data Block

Plan Item

Size Metric

Measurement Type

Copyright © 2007-2016 Tuma Solutions, LLC

Fact: Plan Item Attributes
Tools commonly allow plan items to be annotated with keywords, labels, system IDs, and other types of

data. The Plan Item Attribute table will make it possible to capture this information about the plan.

Column Type Description

PLAN_ITEM_ATTR_FACT_KEY Integer A unique ID for this table row

PLAN_ITEM_KEY Integer Key for the plan item that this attribute value is
associated with

ATTRIBUTE_KEY Integer Key of the entry in the Attribute dimension
describing the type of this value.

ATTRIBUTE_VALUE_KEY Integer Key for an entry in the Attribute Value table

ROW_EFF_START/END_DATE, ROW_CURRENT_FLAG,
ROW_CREATED/LAST_UPDATED_BY_KEY

…same as above

Fact: Plan Item Notes
Some tools allow free-text notes to be attached to the items in a project plan. The Plan Item Note table

captures this information.

Column Type Description

PLAN_ITEM_NOTE_FACT_KEY Integer A unique ID for this table row

PLAN_ITEM_KEY Integer Key for the plan item that this note is
associated with

NOTE_TEXT_KEY Integer Key of an entry in the Text dimension that
holds the value of this note

ROW_EFF_START/END_DATE, ROW_CURRENT_FLAG,
ROW_CREATED/LAST_UPDATED_BY_KEY

…same as above

Plan Item Attr
Attribute

Plan Item

Attribute Value

Plan Item Note TextPlan Item

Copyright © 2007-2016 Tuma Solutions, LLC

Fact: Plan Item Dependencies
Real world plans often contain dependencies between elements, tasks, and milestones. The Plan Item

Dependency table captures these dependencies.

Column Type Description

PLAN_ITEM_DEPENDENCY_FACT_KEY Integer A unique ID for this table row

PREDECESSOR_PLAN_ITEM_KEY Integer Key for the plan item that is the
predecessor in this dependency

SUCCESSOR_PLAN_ITEM_KEY Integer Key for the plan item that is the successor
in this dependency

DEPENDENCY_TYPE_KEY Integer Key for an entry in the dependency type
dimension

DEPENDENCY_LAG_TIME_DAYS Number The lag time for this dependency,
expressed in days. Lag times of zero are
common. A negative value in this column
indicates a lead time.

ROW_EFF_START/END_DATE, ROW_CURRENT_FLAG,
ROW_CREATED/LAST_UPDATED_BY_KEY

…same as above

Each row in this table defines a single dependency between two plan items (which could be WBS

Elements, tasks, or milestones). It is worth noting that the predecessor and successor can potentially

belong to different projects.

Plan Item Dependency

Dependency Type

Plan Item Project, WBS Element, Task

